- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Grest, ed., Gary (2)
-
Caggioni, Marco (1)
-
Chockalingam, S. (1)
-
Cohen, Tal (1)
-
Crosby, Alfred J. (1)
-
Del_Gado, Emanuela (1)
-
Henzel, Thomas (1)
-
Marchand, Manon (1)
-
Nijjer, Japinder (1)
-
Trappe, Veronique (1)
-
Vasisht, Vishwas_V (1)
-
Vinutha, H_A (1)
-
Wahdat, Hares (1)
-
Yan, Jing (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Cessation of flow in yield stress fluids results in a stress relaxation process that eventually leads to a finite residual stress. Both the rate of stress relaxation and the magnitude of the residual stresses systematically depend on the preceding flow conditions. To assess the microscopic origin of this memory effect, we combine experiments with large-scale computer simulations, exploring the behavior of jammed suspensions of soft repulsive particles. A spatiotemporal analysis of particle motion reveals that memory formation during flow is primarily governed by the emergence of domains of spatially correlated nonaffine displacements. These domains imprint the configuration of stress imbalances that drive dynamics upon flow cessation, as evidenced by a striking equivalence of the spatial correlation patterns in particle displacements observed during flow and upon flow cessation. Additional contributions to stress relaxation result from the particle packing that reorganizes to minimize the resistance to flow by decreasing the number of locally stiffer configurations. Regaining rigidity upon flow cessation drives further relaxation and effectively sets the magnitude of the residual stress. Our findings highlight that flow in yield stress fluids can be seen as a training process during which the material stores information of the flowing state through the development of domains of correlated particle displacements and the reorganization of particle packings optimized to sustain the flow. This encoded memory can then be retrieved in flow cessation experiments.more » « less
-
Henzel, Thomas; Nijjer, Japinder; Chockalingam, S.; Wahdat, Hares; Crosby, Alfred J.; Yan, Jing; Cohen, Tal; Grest, ed., Gary (, PNAS Nexus)Abstract Cavitation has long been recognized as a crucial predictor, or precursor, to the ultimate failure of various materials, ranging from ductile metals to soft and biological materials. Traditionally, cavitation in solids is defined as an unstable expansion of a void or a defect within a material. The critical applied load needed to trigger this instability -- the critical pressure -- is a lengthscale independent material property and has been predicted by numerous theoretical studies for a breadth of constitutive models. While these studies usually assume that cavitation initiates from defects in the bulk of an otherwise homogeneous medium, an alternative and potentially more ubiquitous scenario can occur if the defects are found at interfaces between two distinct media within the body. Such interfaces are becoming increasingly common in modern materials with the use of multimaterial composites and layer-by-layer additive manufacturing methods. However, a criterion to determine the threshold for interfacial failure, in analogy to the bulk cavitation limit, has yet to be reported. In this work, we fill this gap. Our theoretical model captures a lengthscale independent limit for interfacial cavitation, and is shown to agree with our observations at two distinct lengthscales, via two different experimental systems. To further understand the competition between the two cavitation modes (bulk versus interface), we expand our investigation beyond the elastic response to understand the ensuing unstable propagation of delamination at the interface. A phase diagram summarizes these results, showing regimes in which interfacial failure becomes the dominant mechanism.more » « less
An official website of the United States government
